Chapter 2 Differential Calculus of Vector

I. Derivative of a vector

Definition: A vector function $\mathbf{v}(t)$ is said to be differentiable at a point t if the limit

$$
\mathbf{v}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{v}(t+\Delta t)-\mathbf{v}(t)}{\Delta t}
$$

exists. The vector $\mathbf{v}^{\prime}(t)$ is called the derivative of $\mathbf{v}(t)$. In terms of components with respect to a given Cartesian coordinate system, the derivative $\mathbf{v}^{\prime}(t)$ is obtained by differentiating each component separately

$$
\mathbf{v}^{\prime}(t)=v_{1}^{\prime}(\mathrm{t}) \mathbf{i}+v_{2}^{\prime}(\mathrm{t}) \mathbf{j}+v_{2}^{\prime}(\mathrm{t}) \mathbf{k}
$$

It follows

$$
\begin{aligned}
& (\mathbf{u}+\mathbf{v})^{\prime}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime} \\
& (\mathbf{u} \cdot \mathbf{v})^{\prime}=\mathbf{u}^{\prime} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{v}^{\prime} \\
& (\mathbf{u} \times \mathbf{v})^{\prime}=\mathbf{u}^{\prime} \times \mathbf{v}+\mathbf{u} \times \mathbf{v}^{\prime}
\end{aligned}
$$

Ex. 1.

Let $\mathbf{v}(t)$ be a vector function, whose length is constant. Then $\mathbf{v} \cdot \mathbf{v}=v^{2} \Rightarrow(\mathbf{v} \cdot \mathbf{v})^{\prime}=0$, we get $2 \mathbf{v} \cdot \mathbf{v}^{\prime}=0$. This yields the important result: the derivative of a vector function $\mathbf{v}(t)$ of constant length is either the zero vector or is perpendicular to $\mathbf{v}(t)$.

II. Geometry of a space curve

1. Arc length

A Cartesian coordinate system being given, we may represent a curve C by a vector function

$$
\begin{aligned}
& \qquad \begin{array}{l}
\mathbf{f}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k} \\
\mathbf{v}(t)
\end{array}=\mathbf{r}^{\prime}(t)=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k} \\
& \text { If } s \text { represents arc length along the curve }
\end{aligned}
$$

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}}{d s} \frac{d s}{d t}=\left(\frac{d x}{d s} \mathbf{i}+\frac{d y}{d s} \mathbf{j}+\frac{d z}{d s} \mathbf{k}\right) \frac{d s}{d t} \text { ค } \cap \cap \mathrm{V} \text { คrsitV }
$$

The expression in parentheses is clearly a unit vector tangent to the curve at point P , we denote this unit vector by \mathbf{T}, and

$$
\begin{aligned}
& \mathbf{T}=\frac{d x}{d s} \mathbf{i}+\frac{d y}{d s} \mathbf{j}+\frac{d z}{d s} \mathbf{k}=\frac{d \mathbf{r}}{d s}=\frac{\mathbf{v}}{v} \\
& |\mathbf{v}|=|\mathbf{T}| \frac{d s}{d t}=\frac{d s}{d t}
\end{aligned}
$$

The arc length is

$$
\begin{equation*}
s=\int d s=\int|\mathbf{v}| d t=\int \sqrt{\mathbf{v} \cdot \mathbf{v}} d t \tag{2.1}
\end{equation*}
$$

Ex. 2.

Find the tangent to the ellipse $\frac{1}{4} x^{2}+y^{2}=1$ at $\mathrm{P}\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)$.
Solution: $\mathbf{r}(t)=2 \cos t \mathbf{i}+\sin t \mathbf{j}$, and P corresponds to $t=\pi / 4$

$$
\begin{aligned}
& \mathbf{r}^{\prime}(t)=-2 \sin t \mathbf{i}+\cos t \mathbf{j} \\
& \mathbf{r}^{\prime}(\pi / 4)=-\sqrt{2} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}
\end{aligned}
$$

Ex. 3.

Find the arc length of a circular helix: $\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}+c t \mathbf{k},(c \neq 0) \quad 0 \leq t \leq b$.
Solution: $\mathbf{v}(t)=-a \sin t \mathbf{i}+a \cos t \mathbf{j}+c \mathbf{k}$

$$
\begin{aligned}
& \mathbf{y} \cdot \mathbf{v}=a^{2}+c^{2} \\
& s=\int_{0}^{b} \sqrt{a^{2}+c^{2}} d t=b \sqrt{a^{2}+c^{2}}
\end{aligned}
$$

Ex. 4.

Find the length of the space curve: $y=\sin 2 \pi x, z=\cos 2 \pi x$, from $(0,0,1)$ to $(1,0,1)$.
Solution: $\mathbf{r}=x \mathbf{i}+\sin 2 \pi x \mathbf{j}+\cos 2 \pi x \mathbf{k} \Rightarrow d \mathbf{r} / d x=\mathbf{i}+2 \pi \cos 2 \pi x \mathbf{j}-2 \pi \sin 2 \pi x \mathbf{k}$

$$
s=\int_{0}^{1} \sqrt{1^{2}+(2 \pi \cos 2 \pi x)^{2}+(2 \pi \sin 2 \pi x)^{2}} d x=\int_{0}^{1} \sqrt{1+4 \pi^{2}} d x=\sqrt{1+4 \pi^{2}}
$$

Ex.5. Euthern 2 iMan university

Find the length of the curve: $r=a(1-\cos \theta), 0 \leq \theta \leq 2 \pi, a>0$.
Solution: $\mathbf{r}=r \mathbf{e}_{r} \Rightarrow \frac{d \mathbf{r}}{d \theta}=\frac{d r}{d \theta} \mathbf{e}_{r}+r \frac{d \mathbf{e}_{r}}{d \theta}=a \sin \theta \mathbf{e}_{r}+r \mathbf{e}_{\theta}=a \sin \theta \mathbf{e}_{r}+a(1-\cos \theta) \mathbf{e}_{\theta}$

$$
\begin{aligned}
s & =\int_{0}^{2 \pi} \sqrt{(a \sin \theta)^{2}+[a(1-\cos \theta)]^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{2 a^{2}-2 a^{2} \cos \theta} d \theta=a \int_{0}^{2 \pi} \sqrt{2(1-\cos \theta)} d \theta \\
& =a \int_{0}^{2 \pi} 2 \sin \frac{\theta}{2} d \theta=\left.4 a\left(-\cos \frac{\theta}{2}\right)\right|_{0} ^{2 \pi}=8 a
\end{aligned}
$$

2. Frenet formula

We have a unit tangent vector $\mathbf{T}=\frac{d \mathbf{r}}{d s}$, and define

$$
\begin{equation*}
\frac{d \mathbf{T}}{d s}=\kappa \mathbf{N}, \quad \kappa \geq 0 \tag{2.2}
\end{equation*}
$$

where κ is the magnitude of $\frac{d \mathbf{T}}{d s}$ and is called the curvature, and \mathbf{N} is a unit vector normal to \mathbf{T} and is called the normal or principal normal to the curve. The reciprocal of the curvature, $\rho=\frac{1}{\kappa}$, is called the radius of curvature. In addition to the two perpendicular vector \mathbf{T} and \mathbf{N}, a third unit vector known as the binormal vector, is definede by

$$
\mathbf{B}=\mathbf{T} \times \mathbf{N}
$$

then

$$
\frac{d \mathbf{B}}{d s}=\frac{d}{d s}(\mathbf{T} \times \mathbf{N})=\frac{d \mathbf{T}}{d s} \times \mathbf{N}+\mathbf{T} \times \frac{d \mathbf{N}}{d s}=\kappa \mathbf{N} \times \mathbf{N}+\mathbf{T} \times \frac{d \mathbf{N}}{d s}=\mathbf{T} \times \frac{d \mathbf{N}}{d s}
$$

Since $\frac{d \mathbf{B}}{d s}$ is perpendicular to \mathbf{B}, and from the right hand side of the above equation, $\frac{d \mathbf{B}}{d s}$ is perpendicular to $\mathbf{T}, \frac{d \mathbf{B}}{d s}$ can be written in the form

$$
\begin{equation*}
\frac{d \mathbf{B}}{d s}=-\tau \mathbf{N} \tag{2.3}
\end{equation*}
$$

where τ is the torsion or twisting of the curve.

$$
\begin{equation*}
\frac{d \mathbf{N}}{d s}=\frac{d}{d s}(\mathbf{B} \times \mathbf{T})=\frac{d \mathbf{B}}{d s} \times \mathbf{T}+\mathbf{B} \times \frac{d \mathbf{T}}{d s}=-\tau \mathbf{N} \times \mathbf{T}+\mathbf{B} \times \kappa \mathbf{N}=-\kappa \mathbf{T}+\tau \mathbf{B} \tag{2.4}
\end{equation*}
$$

The three formulas, equations (2.2), (2.3), and (2.4) are called Frenet formulas.
In general, the position vector \mathbf{r} is a function of t, to find \hat{k} and τ, we differentiate \mathbf{r} with

$$
\stackrel{\text { respect to } t}{\dot{\mathbf{r}}}=\frac{d \mathbf{r}}{d t}=\frac{d \mathbf{r}}{d s} \frac{d s}{d t}=\gamma \mathbf{T}
$$

$\ddot{\mathbf{r}}=\dot{v} \mathbf{T}+v \frac{d \mathbf{T}}{d t}=\dot{v} \mathbf{T}+v \frac{d \mathbf{T}}{d s} \frac{d s}{d t}=\dot{v} \mathbf{T}+\kappa v^{2} \mathbf{N}$
$\ddot{\mathbf{r}}=\ddot{v} \mathbf{T}+\dot{v} \frac{d \mathbf{T}}{d t}+\frac{d}{d t}\left(\kappa v^{2}\right) \mathbf{N}+\kappa v^{2} \frac{d \mathbf{N}}{d t}=\ddot{v} \mathbf{T}+\dot{v} \kappa v \mathbf{N}+\frac{d}{d t}\left(\kappa v^{2}\right) \mathbf{N}+\kappa v^{3}(-\kappa \mathbf{T}+\tau \mathbf{B})$

$$
=\left(\ddot{v}-\kappa^{2} v^{3}\right) \mathbf{T}+\left[\kappa v \dot{v}+\frac{d}{d t}\left(\kappa v^{2}\right)\right] \mathbf{N}+\kappa v^{3} \tau \mathbf{B}
$$

$$
\begin{equation*}
\dot{\mathbf{r}} \times \ddot{\mathbf{r}}=\kappa v^{3} \mathbf{B} \Rightarrow \kappa=\frac{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|}{|\dot{\mathbf{r}}|^{3}} \tag{2.5}
\end{equation*}
$$

$$
(\dot{\mathbf{r}} \times \ddot{\mathbf{r}}) \cdot \dddot{\mathbf{r}}=\kappa^{2} v^{6} \tau \Rightarrow \tau=\frac{(\dot{\mathbf{r}} \ddot{\mathbf{r}} \ddot{\mathbf{r}})}{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|^{2}}
$$

Ex. 6.

Given a space curve $\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}+c t \mathbf{k}$, find (1)curvature (2)torsion (3)unit tangent, normal, and binormal vectors.
Solution : $\mathbf{v}=\dot{\mathbf{r}}=-a \sin t \mathbf{i}+a \cos t \mathbf{j}+c \mathbf{k}=v \mathbf{T} \Rightarrow v=\sqrt{a^{2}+c^{2}}, \dot{v}=0$

$$
\begin{aligned}
& \mathbf{T}=\frac{\mathbf{v}}{v}=\frac{-a \sin t}{\sqrt{a^{2}+c^{2}}} \mathbf{i}+\frac{a \cos t}{\sqrt{a^{2}+c^{2}}} \mathbf{j}+\frac{c}{\sqrt{a^{2}+c^{2}}} \mathbf{k} \\
& \mathbf{a}=\ddot{\mathbf{r}}=-a \cos t \mathbf{i}-a \sin t \mathbf{j}=\dot{v} \mathbf{T}+\kappa v^{2} \mathbf{N}=\kappa\left(a^{2}+c^{2}\right) \mathbf{N}, \dddot{\mathbf{r}}=a \sin t \mathbf{i}-a \cos t \mathbf{j} \\
& \dot{\mathbf{r}} \times \ddot{\mathbf{r}}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-a \sin t & a \cos t & c \\
-a \cos t & -a \sin t & 0
\end{array}\right|=\kappa v^{3} \mathbf{B} \Rightarrow a c \sin t \mathbf{i}-a c \cos t \mathbf{j}+a^{2} \mathbf{k}=\kappa v^{3} \mathbf{B} \\
& \kappa v^{3}=\sqrt{a^{2} c^{2}+a^{4}}=a \sqrt{a^{2}+c^{2}} \Rightarrow \kappa=\frac{a}{a^{2}+c^{2}}
\end{aligned}
$$

Substituting into a, we have $\mathbf{N}=-\cos t \mathbf{i}-\sin t \mathbf{j}$

$$
\tau=\frac{(\dot{\mathbf{r}} \ddot{\mathbf{r}} \ddot{\mathbf{r}})}{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|^{2}}=\frac{a^{2} c}{a^{2}\left(a^{2}+c^{2}\right)}=\frac{c}{a^{2}+c^{2}}
$$

$$
\mathbf{B}=\mathbf{T} \times \mathbf{N}=\frac{1}{\sqrt{a^{2}+c^{2}}}\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-a \sin t & a \cos t & c \\
-\cos t & -\sin t & 0
\end{array}\right|=\frac{1}{\sqrt{a^{2}+c^{2}}}(c \sin \mathbf{i}-c \cos t \mathbf{j}+a \mathbf{k})
$$

Ex. 7.

Show that for a curve $y=y(x)$ in the $x-y$ plane, $\kappa(x)=\frac{\left|y^{\prime \prime}\right|}{\left(1+y^{\prime 2}\right)^{3 / 2}}\left(y^{\prime}=\frac{d y}{d x}\right)$

Solution: $\mathbf{r}=x \mathbf{i}+y \mathbf{j}$

$$
\begin{aligned}
& \text { on: } \mathbf{r}=x \mathbf{i}+y \mathbf{j} \\
& \mathbf{v}=\mathbf{i}+y^{\prime} \mathbf{j}=v \mathbf{T}, \Rightarrow \nu=\sqrt{1+y^{\prime 2}} \\
& \mathbf{a}=y^{\prime \prime} \mathbf{j}=\dot{v} \mathbf{T}+\kappa \nu^{2} \mathbf{N} \\
& \mathbf{N} \times \mathbf{a}=\kappa \nu^{3} \mathbf{B} \Rightarrow y^{\prime \prime} \mathbf{k}=\kappa v^{3} \mathbf{B} \Rightarrow k=\frac{\left|y^{\prime \prime}\right|}{v^{3}}=\frac{\left|y^{\prime \prime}\right|}{\left(1+y^{\prime 2}\right)^{3 / 2}} \text { n Nelsitv }
\end{aligned}
$$

[Exercise] The position vector of a particle P is $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+2 t^{3} / 3 \mathbf{k}$. Find (1) the velocity, acceleration, and speed of P , (2) the tangential and centripetal components of acceleration, (3) the curvature of the curve C traversed by P , and (4) the minimum radius of curvature of C.
[Answer] (1) $\mathbf{v}=\mathbf{i}+2 t \mathbf{j}+2 t^{2} \mathbf{k}, \mathbf{a}=2 \mathbf{j}+4 t \mathbf{k}, v=1+2 t^{2}$ (2) $a_{t}=4 t, a_{n}=2$ (3) $\kappa=2 /\left(1+2 t^{2}\right)^{2}$

$$
\rho_{\min }=1 / 2
$$

III. Gradient

Definition: For a given scalar function $f(x, y, z)$ the gradient of f is the vector function

$$
\operatorname{grad} f=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

where $\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}$, read del, is a differential operator. Then

$$
\frac{d f}{d s}=\frac{\partial f}{\partial x} \frac{d x}{d s}+\frac{\partial f}{\partial y} \frac{d y}{d s}+\frac{\partial f}{\partial z} \frac{d z}{d s}=\nabla f \cdot \frac{d \mathbf{r}}{d s}=\nabla f \cdot \mathbf{T}
$$

where \mathbf{T} is the unit tangent vector to the curve described by $\mathbf{r}(s)$. Since $\nabla f \cdot \mathbf{T}=|\nabla f| \cos \theta$, where θ is the angle between ∇f and \mathbf{T}, then $\frac{d f}{d s}=|\nabla f| \cos \theta$; so the component of ∇f in the direction of \mathbf{T} is the directional derivative of f in that direetion. It readily follows from this result that ∇f is in the direction in which $\frac{d f}{d s}$ has its maximum values; this maximum value is equal to $|\nabla f|$.

Consider a surface S in space given by $f(x, y, z)=$ constant. As long as we move along this surface on any curve C, f has constant value and consequently $\frac{d f}{d s}=0$. Thus

$$
\frac{d f}{d s}=\nabla f \cdot \frac{d \mathbf{r}}{d s}=0 \Rightarrow \nabla f \perp \frac{d \mathbf{r}}{d s} \Rightarrow \nabla f \perp \mathbf{T}
$$

where $\mathbf{r}(s)$ is the position vector describing the curve C. Since ∇f is completely determined by f and C is any curve on the surface, ∇f must be normal to the surface.

Find a unit normal vector \mathbf{n} of the cone of revolution $z^{2}=4\left(x^{2}+y^{2}\right)$ at point $\mathrm{P}(1,0,2)$.
Solution: The cone is the level surface $f\left(0\right.$ of $f(x, x, z)=4\left(x^{2}+y^{2}\right)-z^{2}$, Thus

$$
\nabla f=8 x \mathbf{i}+8 y \mathbf{j}-2 z \mathbf{k}
$$

and at P

$$
\begin{aligned}
& \nabla f f_{(1,0,2)}=8 \mathbf{i}-4 \mathbf{k} \\
& \mathbf{n}=\left.\frac{\nabla f}{|\nabla f|}\right|_{(1,0,2)}=\frac{8 \mathbf{i}-4 \mathbf{k}}{\sqrt{8^{2}+(-4)^{2}}}=\frac{2}{\sqrt{5}} \mathbf{i}-\frac{1}{\sqrt{5}} \mathbf{k}
\end{aligned}
$$

Ex. 9.

Find the directional derivative of $f(x, y, z)=4 x^{2} y+3 y^{2}+2 x z^{2}$ at the point $(1,-1,0)$ in the direction of the vector $\mathbf{b}=-3 \mathbf{i}+4 \mathbf{j}$.
Solution: $\nabla f=\left(8 x y+2 z^{2}\right) \mathbf{i}+\left(4 x^{2}+6 y\right) \mathbf{j}+4 x z \mathbf{k}$

$$
\nabla f_{(1,-1,0)}=-8 \mathbf{i}-2 \mathbf{j}
$$

$$
\mathbf{e}_{b}=\frac{\mathbf{b}}{|\mathbf{b}|}=-\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}
$$

$$
\nabla f \cdot \mathbf{e}_{b}=16 / 5
$$

[Exercise] The temperature at any point in space is given by $T=x y+y z+z x$.
(1) Find the direction cosines of the direction in which the temperature changes most rapidly with distance from the point $(1,1,1)$, and determine the maximum rate of change.
(2) Find the derivative of T in the direction of the vector $3 \mathbf{i}-4 \mathbf{k}$ at the point $(1,1,1)$.
[Answer] (1) $\pm(\mathbf{i}+\mathbf{j}+\mathbf{k}) / \sqrt{3} ; 2 \sqrt{3} \quad$ (2) $-2 / 5$

IV. Divergence of a vector field

Definition: Let $\mathbf{v}(x, y, z)$ be a differentiable vector function and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$. Then the function

$$
\operatorname{div} \mathbf{v}=\nabla \cdot \mathbf{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}
$$

is called the divergence of \mathbf{v}.
For a small rectangular solid with edges $\Delta x, \Delta y$, and Δz. In the y direction the outflow of \mathbf{v} through the right-hand face is $v_{2}(x, y+\Delta y, z) \Delta x \Delta z$, through the left-hand face is $-v_{2}(x, y, z) \Delta x \Delta z$, the total outflow in the y direction is the sum

$$
\left[v_{2}(x, y+\Delta y, z)-v_{2}(x, y, z)\right] \Delta x \Delta z
$$

The difference in these values of v_{2} is

$$
\frac{\partial v_{2}}{\partial y} \Delta y
$$

Thus the net outflow from the two faces is

$$
\frac{\partial v_{2}}{\partial y} \Delta x \Delta y \Delta z
$$

Similarly, the two faces in the x and z direction contribute respectively

$$
\frac{\partial v_{1}}{\partial x} \Delta x \Delta y \Delta z \text { and } \frac{\partial v_{3}}{\partial z} \Delta x \Delta y \Delta z
$$

After we divide by the volume $\Delta x \Delta y \Delta z$, we have

$$
\nabla \cdot \mathbf{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}
$$

as the net outflow per unit volume.

区x. S .
If $\mathbf{F}=x \mathbf{i}+y^{2} z \mathbf{j}+x z^{3} \mathbf{k}$, find $\nabla \cdot \mathbf{F}$.
Solution: $\boldsymbol{\nabla} \cdot \mathbf{F}=1+2 y z+3 x z^{2}$

Ex. 11.
Find $\nabla \cdot \mathbf{r}$, given $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
Solution: $\nabla \cdot \mathbf{r}=1+1+1=3$

V．Curl of a vector field

Definition：Let $\mathbf{v}(x, y, z)=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ be a differentiable vector function．Then the function

$$
\operatorname{curl} \mathbf{v}=\nabla \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

is called the curl of \mathbf{v} or the rotation of \mathbf{v} ．

Ex． 12.

Let $\boldsymbol{\omega}=\omega_{1} \mathbf{i}+\omega_{2} \mathbf{j}+\omega_{3} \mathbf{k}$ represent the angular velocity of a rigid body，the velocity field is $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$ $=\left(\omega_{1} \mathbf{i}+\omega_{2} \mathbf{j}+\omega_{3} \mathbf{k}\right) \times(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})$ ．The curl of \mathbf{v} is

$$
\nabla \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\omega_{2} z-\omega_{3} y & \omega_{3} x-\omega_{1} z & \omega_{1} y-\omega_{2} x
\end{array}\right|=2 \omega
$$

Hence，the curl of the velocity field in the case of the rotation of a rigid body has the direction of the axis of rotation，and its magnitude equals twice the angular speed ω of the rotation．

$$
\begin{aligned}
& \text { 虽呂种技大锿 } \\
& \text { Southern Taiwan University }
\end{aligned}
$$

VI. Vector identities

$$
\begin{aligned}
& \nabla\left(\phi_{1} \phi_{2}\right)=\phi_{1} \nabla \phi_{2}+\phi_{2} \nabla \phi_{1} \\
& \nabla \cdot(\phi \mathbf{F})=\nabla \phi \cdot \mathbf{F}+\phi \nabla \cdot \mathbf{F} \\
& \nabla \times(\phi \mathbf{F})=\nabla \phi \times \mathbf{F}+\phi \nabla \times \mathbf{F} \\
& \nabla f(u)=\frac{d f}{d u} \nabla u \\
& \nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\nabla \times \mathbf{F})-\mathbf{F} \cdot(\nabla \times \mathbf{G}) \\
& \nabla \times(\mathbf{F} \times \mathbf{G})=(\mathbf{G} \cdot \nabla) \mathbf{F}-(\mathbf{F} \cdot \nabla) \mathbf{G}+(\nabla \cdot \mathbf{G}) \mathbf{F}-(\nabla \cdot \mathbf{F}) \mathbf{G} \\
& \nabla(\mathbf{F} \cdot \mathbf{G})=(\mathbf{F} \cdot \nabla) \mathbf{G}+(\mathbf{G} \cdot \nabla) \mathbf{F}+\mathbf{F} \times(\nabla \times \mathbf{G})+\mathbf{G} \times(\nabla \times \mathbf{F}) \\
& \nabla \times(\nabla \times \mathbf{F})=\nabla(\nabla \cdot \mathbf{F})-\nabla^{2} \mathbf{F} \\
& \nabla \cdot \mathbf{r}=3 \\
& \nabla \times \mathbf{F}=0 \\
& \nabla \times(\nabla \phi)=0 \\
& \nabla \cdot(\nabla \times \mathbf{F})=0 \\
& \nabla \cdot\left(\nabla \phi_{1} \times \nabla \phi_{2}\right)=0
\end{aligned}
$$

Tensor notations:
$\mathbf{a} \cdot \mathbf{b}=a_{i} b_{i}$
$\mathbf{a} \times \mathbf{b}=\varepsilon_{i j k} a_{j} b_{k}$
$\nabla \phi=\phi_{, i}$
$\nabla^{2} \phi=\nabla \cdot(\nabla \phi)=\phi_{, i i}$
$\nabla \cdot \mathbf{F}=F_{i}$,
$\nabla \times \mathbf{F}=\varepsilon_{i j k} F_{k, j}$
where

and

$$
\varepsilon_{i j k} Q_{i p s}=\delta_{j p} \delta_{k s}-\delta_{j s} \delta_{k p} \cap \text { aiNan universitv }
$$

where

$$
\delta_{i j}= \begin{cases}1 & i=j \\ 0 & \text { otherwise }\end{cases}
$$

Ex. 13.

Prove $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{B} \cdot \mathbf{C}) \mathbf{A}$.
Solution: $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=\varepsilon_{i j k}(\mathbf{A} \times \mathbf{B})_{j} \mathrm{C}_{k}=\varepsilon_{i j k} \varepsilon_{j l m} \mathrm{~A}_{l} \mathrm{~B}_{m} \mathrm{C}_{k}$

$$
\begin{aligned}
& =\varepsilon_{j k i} \varepsilon_{j l m} \mathrm{~A}_{l} \mathrm{~B}_{m} \mathrm{C}_{k}=\left(\delta_{k l} \delta_{i m}-\delta_{k m} \delta_{i l}\right) \mathrm{A}_{l} \mathrm{~B}_{m} \mathrm{C}_{k} \\
& =\mathrm{A}_{k} \mathrm{~B}_{i} \mathrm{C}_{k}-\mathrm{A}_{i} \mathrm{~B}_{k} \mathrm{C}_{k} \\
& =(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{B} \cdot \mathbf{C}) \mathbf{A}
\end{aligned}
$$

Ex. 14.

Prove $\nabla \times(\mathbf{F} \times \mathbf{G})=(\mathbf{G} \cdot \nabla) \mathbf{F}-(\mathbf{F} \cdot \nabla) \mathbf{G}+(\nabla \cdot \mathbf{G}) \mathbf{F}-(\nabla \cdot \mathbf{F}) \mathbf{G}$.
Solution: $\nabla \times(\mathbf{F} \times \mathbf{G})=\varepsilon_{i j k}(\mathbf{F} \times \mathbf{G})_{k, j}=\varepsilon_{i j k} \varepsilon_{k l m}\left(\mathrm{~F}_{l} \mathrm{G}_{m}\right)_{j}$

$$
\begin{aligned}
& =\varepsilon_{k i j} \varepsilon_{k l m}\left(\mathrm{~F}_{\mathrm{i}} \mathrm{G}_{m}\right)_{, j}=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right)\left(\mathrm{F}_{\mathrm{l}} \mathrm{G}_{m}\right)_{, j} \\
& =\left(\mathrm{F}_{i} \mathrm{G}_{j}\right)_{, j}-\left(\mathrm{F}_{j} \mathrm{G}_{i}\right)_{, j} \\
& =\mathrm{F}_{i, j} \mathrm{G}_{j}+\mathrm{F}_{i} \mathrm{G}_{j, j}-\mathrm{F}_{j, j} \mathrm{G}_{i}-\mathrm{F}_{j} \mathrm{G}_{i, j} \\
& =(\mathbf{G} \cdot \nabla) \mathbf{F}+(\nabla \cdot \mathbf{G}) \mathbf{F}-(\nabla \cdot \mathbf{F}) \mathbf{G}-(\mathbf{F} \cdot \nabla) \mathbf{G}
\end{aligned}
$$

Ex. 15.
Prove $\nabla \times(\nabla \phi)=0$.
Solution: $\nabla \times(\nabla \phi)=\varepsilon_{i j k}(\nabla \phi)_{k, j}=\varepsilon_{i j k} \phi_{, k j}$
Since $\phi_{, k j}=\phi_{, j k}$ and $\varepsilon_{i j k}=-\varepsilon_{i k j}$

Prove $(\mathbf{v} \cdot \nabla) \mathbf{v}=\frac{1}{2} \nabla|\mathbf{v}|^{2}-\mathbf{v} \times(\nabla \times \mathbf{v})$.
Solution: $\mathbf{v} \times(\nabla \times \mathbf{v})=\varepsilon_{i j k} v_{j}(\nabla \times \mathbf{v})_{k}=\varepsilon_{i j k} v_{j}\left(\varepsilon_{k m} v_{m, t}\right)$?

$$
\begin{aligned}
& =\varepsilon_{k i j} \varepsilon_{k l m} v_{j} v_{m, l}=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) v_{j} v_{m, l} \\
& =v_{j} v_{j, i}-v_{j} v_{i, j}=\frac{1}{2}\left(v_{j} v_{j}\right)_{, i}-v_{j} v_{i, j} \\
& =\frac{1}{2} \nabla(\mathbf{v} \cdot \mathbf{v})-(\mathbf{v} \cdot \nabla) \mathbf{v} \\
& =\frac{1}{2} \nabla|\mathbf{v}|^{2}-(\mathbf{v} \cdot \nabla) \mathbf{v} \\
\therefore(\mathbf{v} \cdot \nabla) \mathbf{v} & =\frac{1}{2} \nabla|\mathbf{v}|^{2}-\mathbf{v} \times(\nabla \times \mathbf{v})
\end{aligned}
$$

[Exercise] Show that $\nabla(\mathbf{v} \cdot \mathbf{v})=2 \mathbf{v} \cdot \nabla \mathbf{v}+2 \mathbf{v} \times(\nabla \times \mathbf{v})$.

