Chapter 6 **Design for Parallel Reactions**

(本章為課本的第七章)

§6-1.Qualitative discussion about product distribution

1. Consider the Parallel Reactions

$$A
\begin{array}{c} k_1 \\ \hline R \\ \hline k_2 \\ \hline S \\ \end{array}
\begin{array}{c} \text{(desired product)} \\ \text{(unwanted product)} \\ \end{array}$$

rate equations:

$$r_R = \frac{dC_R}{dt} = k_1 C_A^{a_1}; r_S = \frac{dC_S}{dt} = k_2 C_A^{a_2}$$
 $\therefore \frac{r_R}{r_S} = \frac{C_R}{C_S} = \frac{k_1}{k_2} C_A^{a_1 - a_2}$

- We wish this ratio to be as large possible.
- \bullet k₁, k₂, a_1 and a_2 are all constant for a specific system at a given temperature. C_A is the only factor in this equation which we can adjust and control.

$$\bullet \text{If } a_1 > a_2 \rightarrow C_A \uparrow , \frac{C_R}{C_S} \uparrow$$

A batch or plug flow reactor would favor formation of product R and would require a minimum reactor size.

◆If
$$a_1 < a_2$$
 → C_A ↑ , $\frac{C_R}{C_S}$ ↓ or C_A ↓ , 所得的 $\frac{C_R}{C_S}$ 相對較高。

Require large mixed flow reactor.

$$\oint \text{If } a_1 = a_2 \implies \frac{r_R}{r_S} = \frac{C_R}{C_S} = \frac{k_1}{k_2} = \text{constant}$$

♦ If $a_1 = a_2$ → $\frac{r_R}{r_S} = \frac{C_R}{C_S} = \frac{k_1}{k_2}$ = constant

The products distribution is fixed by k_1/k_2 alone and unaffected by types of reactor.

2. By using the correct contacting pattern of reacting fluids, we can control the concentration of reactants.

注意:由於 k₁和 k₂分别是不同的反應,因

此, k_{10} 和 k_{20} 與 E_1 和 E_2 是不同的

●●在第二章談到:

 $k_1 = k_{10} \exp(-E_1/RT)$

 $k_2 = k_{20} exp(-E_2/RT)$

 $\therefore \frac{r_R}{r_S} = \frac{C_R}{C_S} = \frac{k_1}{k_2} C_A^{a_1 - a_2}$

若已經選擇一固定種類的反應器與加料方式

→ CA 值的變化已無法再改變

→ 則改變溫度以調整 $\frac{k_1}{k_2}$ 值亦是重要的方法

$$\pm \frac{k_2}{k_1} = \frac{k_{20}}{k_{10}} \exp[-(E_2 - E_1)/RT] \text{ or } \frac{k_1}{k_2} = \frac{k_{10}}{k_{20}} \exp[-(E_1 - E_2)/RT]$$

- ◆若 E_1 < E_2 → 降低溫度會提高 k_1/k_2 值 → 有利於得到 R。
- ◆若 $E_1 > E_2$ → 升高溫度可降低 k_1/k_2 值 → 有利於得到 R。

Example 6-1: The desired liquid-phase reaction University

$$A + B \xrightarrow{k_1} R + T \xrightarrow{dC_R} = \frac{dC_T}{dt} = k_1 C_A^{1.5} C_B^{0.3}$$

is accompanied by the unwanted side reaction

$$A + B \xrightarrow{k_2} S + U \xrightarrow{dC_S} = \frac{dC_U}{dt} = k_2 C_A^{0.5} C_B^{1.8}$$

From the standpoint of favorable product distribution, order the contacting schemes of Figure 7.2, from the most desirable to the least desirable.

§6-2.Quatitative discussion about product distribution L就 parallel reaction 而言:

若 rate equation 為已知

勞可定量的定出 product distribution and reactor-size requirements。

(1)Define:

●instantaneous fraction yield of R(R 的瞬間分數產率, φ) =反應物 A 瞬間消失時,轉變成我們所要的產物 R 的分率。

$$\therefore \varphi = \frac{moles \ R \ formed}{moles \ A \ reacted} = \frac{dC_R}{-dC_A}$$

- ●以微觀來看,
 - ■在 PFR 中 → CA 值在反應器內隨其位置而有變化,所以, の亦變化。
 - ■在 MFR 中 → C_A 值在反應器中是一致的,所以, φ 是一致的。
- **②**Overall fractional yield of R(R 的總分數產率, Φ)

=反應器內,各點的瞬時分數產率的平均值。

$$\Phi = \frac{all \ R \ formed}{all \ A \ reacted} = \frac{C_{Rf}}{C_{A0} - C_{Af}} = \frac{C_{Rf}}{-\Delta C_A} = \overline{\varphi}_{\text{in reactor}}$$

●For PFR → C_A changes progressively through the reactor

$$\therefore \Phi_{p} = \frac{-1}{C_{A0} - C_{Af}} \int_{C_{A0}}^{C_{A}} \varphi dC_{A} = \frac{1}{\Delta C_{A}} \int_{C_{A0}}^{C_{A}} \varphi dC_{A}$$

- For MFR \rightarrow The composition is C_{Af} everywhere, so φ is likewise constant throughout the reactor
 - ... Φ_m = φ (在 C_{Af} 求出)
- ●當 A 的濃度由 CAO 反應到 CAf 時,MFR 與 PFR 有下列的關係:

$$\Phi_{\rm m} = \left(\frac{d\Phi_{\rm p}}{dC_{\rm A}}\right)_{at\ C_{Af}} \qquad \Phi_{\rm p} = \frac{1}{\Delta C_{\rm A}} \int_{C_{A0}}^{C_{\rm A}} \Phi_{\rm m} dC_{\rm A}$$

☆此式可用來藉一類型的反應器去推測另一類型的反應器。

●N個MFR,A濃度分別為CA1、CA2、---、CAN,則 overall fractional yields 可由 N 個 reactor 的 instantaneous fraction yield 和其反應量而得:

$$\varphi_1(C_{A0}-C_{A1}) + \varphi_2(C_{A1}-C_{A2}) + \cdots + \varphi_N(C_{A,N-1}-C_{AN}) = \Phi_{N \text{ mix}} (C_{A0}-C_{AN})$$
 即
$$\Phi_{N \text{ mix}} = [\varphi_1(C_{A0}-C_{A1}) + \varphi_2(C_{A1}-C_{A2}) + \cdots + \varphi_N(C_{A,N-1}-C_{AN})]/(C_{A0}-C_{AN})$$
 ●任何 reactor,R 的出口濃度: $C_{Rf} = \Phi(C_{A0}-C_{Af})$

$$\Phi_{\text{N mix}} = [\varphi_{1}(C_{\text{A0}} - C_{\text{A1}}) + \varphi_{2}(C_{\text{A1}} - C_{\text{A2}}) + \cdots + \varphi_{N}(C_{\text{A,N-1}} - C_{\text{AN}})]/(C_{\text{A0}} - C_{\text{AN}})$$

outhern Taiwan University

Example 6-2:

Consider the aqueous reactions

A + B
$$\begin{pmatrix} k_1 \\ k_2 \end{pmatrix}$$
 R (desired product) $\frac{dC_R}{dt} = 1.0 \, C_A^{1.5} C_B^{0.3}$, mol/min· ℓ $\frac{dC_S}{dt} = 1.0 \, C_A^{0.5} C_B^{1.8}$, mol/min· ℓ

Equal volumetric flow rates of A and of B streams are fed to the reactor, and each stream has a concentration of 20 mol/liter of reactant. For 90% conversion of A, find the concentration of R in the product stream.

The flow in the reactor follows.

- (A)Plug flow
- (B)Mixed flow
- (C) The best of the four plug-mixed contacting schemes of Example 6.1.

Southern Taiwan University

Example 6-3:

The parallel decompositions of A, $C_{A0} = 2 M$,

$$A \xrightarrow{R} r_R = 1$$

$$S \qquad r_S = 2C_A$$

$$T \qquad r_T = C_A^2$$

Find the maximum expected CS for isothermal operations

- (a) in a mixed flow reactor
- (b) in a plug flow reactor

Sol:
$$\varphi(S/A) = \frac{dC_S}{-dC_A} = \frac{dC_S}{dC_R + dC_S + dC_T} = \frac{2C_A}{1 + 2C_A + C_A^2} = \frac{2C_A}{(1 + C_A)^2}$$

...以φ(S/A)對 CA 作圖而得到上圖,而曲線的最高點發生在

$$\frac{d\varphi}{dC_A} = 0 = \frac{d}{dC_A} \left[\frac{2C_A}{(1+C_A)^2} \right] = \frac{(1+C_A)^2 - C_A [2(1+C_A)]}{(1+C_A)^4}$$

...C_{Sf}是隨著 C_A的大小而變(此和前 2 行,用圖形分析的結論相同),但最 大值出現在

$$\frac{dC_{Sf}}{dC_A} = 0 = \frac{d}{dC_A} \left[\frac{2C_A}{(1+C_A)^2} (2-C_A) \right] = \frac{d}{dC_A} \left[\frac{(4C_A - 2C_A^2)}{(1+C_A)^2} \right]$$

$$0 = \frac{(4 - 4C_A)(1 + C_A)^2 - (4C_A - 2C_A^2)2(1 + C_A)}{(1 + C_A)^4}$$

$$\therefore$$
 $C_A = \frac{1}{2}$ 時,得最大的 $C_{Sf} = \frac{2}{3}$

(B) plug flow reactor → 由上圖知 CA 降到 0 時, 曲線下的面積(即 Csf)最大

$$\therefore C_{Sf} = -\int_{C_{A0}}^{C_{Af}} \varphi(S/A) dC_A = \int_0^2 \frac{2C_A}{(1+C_A)^2} dC_A$$

$$C_{Sf} = 0.867$$

$$\int \frac{2C_A}{(1+C_A)^2} dC_A$$

$$? 1 + C_A = y \rightarrow C_A = y-1 \perp dC_A = dy$$

$$\therefore \int \frac{2C_A}{(1+C_A)^2} dC_A = \int \frac{2(y-1)}{y^2} dy = 2\int (\frac{y}{y^2} - \frac{1}{y^2}) dy = --$$

南台科技大学

Southern Taiwan University