Chapter 5 Design for Single Reactions

（本章為課本的第六章）

§5－1．Size comparison of single reactors

1．Batch reactor 的實用性與優缺點：
（1）Advantage：
（1）small instrumentation cost．
（2）flexibility of operation（may be shut down easily and quickly）．
（2）Disadyantage：
（1）high labor and handling cost．
（2）shut down，clean out，refill－－等，都是無生產的浪費。
－The batch reactor is well suited to produce small amounts of material and to produce many different products from one piece of equipment．

2．Mixed versus plug flow reactors，first－and second－order reactions：
（1）A simple nth－order rate law：
$-\gamma_{A}=-\frac{1}{V} \frac{d N_{A}}{d t}=\mathrm{kC}_{\mathrm{A}}{ }^{\mathrm{n}}$
$\mathrm{C}_{\mathrm{A}}=\frac{N_{A}}{V}=\frac{N_{A 0}\left(1-X_{A}\right)}{V_{0}\left(1+\varepsilon_{A} X_{A}\right)}=\mathrm{C}_{\mathrm{A} 0} \frac{\left(1-X_{A}\right)}{\left(1+\varepsilon_{A} X_{A}\right)} \quad---$ 請看 page 3－21
$\therefore-\gamma_{A}=-\frac{1}{V} \frac{d N_{A}}{d t}=\mathrm{kC}_{\mathrm{A}}{ }^{\mathrm{n}}=\mathrm{kC}_{A 0}{ }^{\mathrm{n}}\left[\frac{\left(1-X_{A}\right)}{\left(1+\varepsilon_{A} X_{A}\right)}\right]^{\mathrm{n}}$
（2）From page 4－4 or 課本的 Eq．5－11，

\bullet 兩式相除 $\rightarrow \frac{\left(\tau C_{A 0}^{n-1}\right)_{m}}{\left(\tau C_{A 0}^{n-1}\right)_{p}}=\frac{\left(\frac{C_{A 0}^{n} V}{F_{A 0}}\right)_{m}}{\left(\frac{C_{A 0}^{n} V}{F_{A 0}}\right)_{p}}=\frac{\left[X_{A}\left(\frac{1+\varepsilon_{A} X_{A}}{1-X_{A}}\right)^{n}\right]_{m}}{\left[\int_{0}^{X_{A}}\left(\frac{1+\varepsilon_{A} X_{A}}{1-X_{A}}\right)^{n} d X_{A}\right]_{p}}$

粦With constant density $\left(\varepsilon_{\mathrm{A}}=0\right)$
$\stackrel{n}{\wedge}$ ■ $\neq 1 \rightarrow \frac{\left(\tau C_{A 0}^{n-1}\right)_{m}}{\left(\tau C_{A 0}^{n-1}\right)_{p}}=\frac{\left[\frac{X_{A}}{\left(1-X_{A}\right)^{n}}\right]_{m}}{\left[\frac{\left(1-X_{A}\right)^{1-n}-1}{n-1}\right]_{p}}$ $\square_{\mathrm{n}=1 \rightarrow \frac{\left(\tau C_{A 0}^{n-1}\right)_{m}}{\left(\tau C_{A 0}^{n-1}\right)_{p}}=\frac{\left[\frac{X_{A}}{\left(1-X_{A}\right)^{n}}\right]_{m}}{-\ln \left(1-X_{A}\right)_{p}}, ~}^{\left({ }^{2}\right.}$
－For identical feed composition $\mathrm{C}_{\mathrm{A} 0}$ and flow rate $\mathrm{F}_{\mathrm{A} 0}$
（7）上兩式代表著二種反應器的體積比。

 reaction ，$\frac{\left(\tau C_{A 0}^{n-1}\right)_{m}}{\left(\tau C_{A 0}^{n-1}\right)_{p}}$ 對 $1-\mathrm{X}_{\mathrm{A}}$ 的關係。其結論為：
（1）For all positive reaction orders
${ }^{\text {n }}$ The volume of mixed reactor is always larger than that of the plug reactor
The ratio of volumes increases with reaction order．
（2）When conversion is small
$\stackrel{\leftrightarrow}{ } \rightarrow$ the reactor performance is only slightly affected by flow type．
At high conversion
$\stackrel{4}{4}$ the reactor performance increases very rapidly．
此時，反應器的種類對反應器體積大小的影響較大。
（3）反應過程，density 的變動會影響設計，但相對於反應器的種類，density的變動所造成的影響較小。

Example 5－1：

The aqueous reaction $\mathrm{A}+\mathrm{B} \rightarrow$ products with known kinetics

$$
-\gamma_{A}=(500 \text { liter } / \mathrm{mol} \cdot \mathrm{~min}) \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}
$$

is to take place in a plug flow reactor under the following conditions：
volume of reactor $\mathrm{V}=0.1$ liter
volumetric feed rate $v_{0}=0.05 \mathrm{liter} / \mathrm{min}$ ．
concentration of reactants in feed， $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.01 \mathrm{~mol} /$ liter
（a）What fractional conversion of reactants can be expected？
（b）For the same conversion as in part（a），what size of mixed flow reactor is needed？
（c）What conversion can be expected in a mixed reactor equal in size to the plug flow reactor？

菜台科技大唒

 Southern Taiwan UniversityExample 5－2：
依下列反應，以 $100 \mathrm{~mol} / \mathrm{hr}$ 的速率在 CSTR 反應器中生產 R 。而進料的濃度為 $\mathrm{C}_{\mathrm{A} 0}=0.1 \mathrm{~mol} / \mathrm{liter}$ ，成本是 $\$ 0.5 / \mathrm{mol} \mathrm{A}$ ；装置，儀器，勞工，折舊等成本是 $\$ 0.01 / \mathrm{hr}$ •liter。則反應器體積，進料莫耳速率與轉化率為何時，方能得到最低成本？

$$
\mathrm{A} \rightarrow \mathrm{R} \quad r_{R}=\left(0.2 \mathrm{hr}^{-1}\right) \mathrm{C}_{\mathrm{A}}
$$

（1）Consider N plug flow reactors connected in series，and let $X_{1}, X_{2},---, X_{N-1}, X_{N}$ be the fractional conversion of component A leaving reactor $1,2,---, N-1, N$ ．第一個 reactor：$\frac{V_{1}}{F_{0}}=\int_{X_{0}}^{X_{1}} \frac{d X}{-r}$ ；第二個 reactor：$\frac{V_{2}}{F_{0}}=\int_{X_{1}}^{X_{2}} \frac{d X}{-r}$

\therefore For the N reactor in series
$\frac{V_{1}}{F_{0}}=\frac{V_{1}}{F_{0}}+\frac{V_{2}}{F_{0}}+--+\frac{ק_{N-1}}{F_{0}}+\frac{W_{N}}{F_{0}}=\sum_{i=1}^{N} \frac{V_{1}}{F_{0}}$ 贝iversity

$$
=\int_{X_{0}}^{X_{1}} \frac{d X}{-r}+\int_{X_{1}}^{X_{2}} \frac{d X}{-r}+\cdots+\int_{X_{N-2}}^{X_{N-1}} \frac{d X}{-r}+\int_{X_{N-1}}^{X_{N}} \frac{d X}{-r}=\int_{0}^{X_{N}} \frac{d X}{-r}
$$

For a plug flow reactor with volume $\mathrm{V} \rightarrow \frac{V}{F_{0}}=\int_{0}^{X_{N}} \frac{d X}{-r}$
－ N plug reactors in series with a total volume V gives the same conversion as a single plug flow reactor of volume V ．
（2）Consider N plug flow reactors connected in parallel：

© 先將 series 的 reactors 依（1）的方式併成一個反應器。
（2）一般而言，進料和出口的轉化率會相等（why？）：
$\left.{ }^{M}\right) X_{0}, X_{1}, ~-r$ 都相等

－每個支流的 $\frac{V}{F_{A}}$ 要一樣 \rightarrow reactor 的體積大，其通過的流率要高。

Example 5－3：

The reactor setup shown in Fig．A consists of three plug flow reactors in two parallel branches．Branch D has a reactor of volume 50 liters followed by a reactor of volume 30 liters．Branch E has a reactor of volume 40 liters．What fraction of the feed should go to branch D ？

Fig．A
（即課本 Fig E6．1，課本的圖較清楚）

 same conversion as a single reactor of volume V ．
How to distribute the feed for two reactors of volume 60 and 30 liters connected in parallel，in such manner that fluid streams which meet have the same composition？

2．（1） DIn plug flow
$\stackrel{\Perp}{ }{ }^{\Perp}$ The concentration of reactant decreases progressively through the system．
（2In mixed flow
$\stackrel{4}{4}$ The concentration of reactant drops immediately to a low value．
－反應的 order 越高，使用 PFR 的效率就越高於 CSTR。

（2）Consider a series of N equal－size mixed flow reactors．$\varepsilon=0$ and $\mathrm{t}=\tau$ ．
© $-r=\mathrm{kC}_{\mathrm{A}}$ 型式的 First－order reaction
（1）$\because \tau=\frac{C_{A 0} V}{F_{A 0}}=\frac{C_{A 0}\left(X_{A f}-X_{A i}\right)}{\left(-\gamma_{A}\right)_{f}}$
（page 4－4 or 課本 Eq．5－12）
\therefore 第 i 個 reactor 可寫成 $\tau_{i}=\frac{C_{0} V_{i}}{F_{0}}=\frac{V_{i}}{v}=\frac{C_{0}\left(X_{i}-X_{i-1}\right)}{-\gamma_{i}}$（不寫 $\mathrm{C}_{A 0}$ 或 $\gamma_{A i}$ ！！）
－考慮 constant－volume system

\therefore 第一個 $\operatorname{CSTR} \rightarrow \frac{C_{0}}{C_{1}}=1+\mathrm{k} \tau ;$ 第二個 $\operatorname{CSTR} \rightarrow \frac{C_{1}}{C_{2}}=1+\mathrm{k} \tau$
第三個 $\operatorname{CSTR} \rightarrow \frac{C_{2}}{C_{3}}=1+\mathrm{k} \tau$
\therefore 第 N 個 $\mathrm{CSTR} \rightarrow \frac{C_{N-1}}{C_{N}}=1+\mathrm{k} \tau$

$$
\begin{aligned}
& \frac{C_{0}}{C_{N}}=\frac{1}{1-X_{N}}=\frac{C_{0}}{C_{1}} \times \frac{C_{1}}{C_{2}} \times \frac{C_{2}}{C_{3}} \mathrm{x}--\mathrm{x} \frac{C_{N-1}}{C_{N}}=(1+\mathrm{k} \tau)^{\mathrm{N}} \\
& \text { or } \tau_{\text {Nreactor }}=\mathrm{N} \tau=\frac{N}{k}\left[\left(\frac{C_{0}}{C_{N}}\right)^{1 / N}-1\right]
\end{aligned}
$$

粦若 $\mathrm{N} \rightarrow \infty$

$$
\stackrel{\wedge}{\wedge} \tau_{\text {Nreactor }}=\mathrm{N} \tau=\frac{N}{k}\left[\left(\frac{C_{0}}{C_{N}}\right)^{1 / N}-1\right]=\frac{1}{k} \ln \frac{C_{0}}{C_{N}}=-\frac{1}{k} \ln \left(1-X_{N}\right)
$$

－與 page 4－8 的 PFR 之 First－order reaction 相同。而事實上，串聯的 CSTR 越多，其特性越䞶近於 PFR。當串聯的 CSTR 數目是 ∞ 時，即變成 PFR。
\checkmark 比較 N 個 CSTR 與 PFR 的操作狀況可得到下圖（請參閱課本 Figure 6－5，注意：該圖適用 First－order reaction）：

－第一個 CSTR ：$\tau_{1}=\frac{C_{0}-C_{1}}{k C_{1}^{2}} \Rightarrow \mathrm{kC}_{1}^{2} \tau_{1}+\mathrm{C}_{1}-\mathrm{C}_{0}=0$
$\therefore \mathrm{C}_{1}=\frac{-1+\sqrt{1+4 k \tau_{1} C_{0}}}{2 k \tau_{1}}$
－第二個 $\operatorname{CSTR}: \tau_{2}=\frac{C_{1}-C_{2}}{k C_{2}^{2}} \rightarrow \mathrm{kC}_{2}{ }^{2} \tau_{2}+\mathrm{C}_{2}-\mathrm{C}_{1}=0$

$$
\begin{aligned}
& \therefore \mathrm{C}_{2}=\frac{-1+\sqrt{1+4 k \tau_{2} C_{1}}}{2 k \tau_{2}} \\
& \text { 但 } \tau_{1}=\tau_{2}=---- \\
& \begin{aligned}
\mathrm{C}_{2} & =\frac{-1+\sqrt{1+4 k \tau\left(\frac{-1+\sqrt{1+4 k \tau C_{0}}}{2 k \tau}\right)}}{2 k \tau} \\
& =\frac{1}{2 k \tau}\left[-1+\sqrt{1+\left(-2+2 \sqrt{1+4 k \tau C_{0}}\right)}\right] \\
& =\frac{1}{2 k \tau}\left[-1+\sqrt{-1+2 \sqrt{1+4 k \tau C_{0}}}\right] \\
& =\frac{1}{4 k \tau}\left[-2+2 \sqrt{-1+2 \sqrt{1+4 k \tau C_{0}}}\right]
\end{aligned}
\end{aligned}
$$

$$
C_{3}=\frac{-1+\sqrt{1+4 k \tau C_{2}}}{2 k \tau}=---
$$

3For plug flow reactor

$$
\frac{C_{0}}{C_{N}}=1+\mathrm{C}_{0} \mathrm{k} \tau_{p} \quad---
$$

率下圖是 2nd－order reaction 的操作狀況（請參閲課本 Figure 6.6 的圖較清晰）。和前面一樣，串聯的 CSTR 越多，其特性越䞶近於 PFR。當串聯的 CSTR 數目是 ∞ 時，即變成 PFR。

Example 5-5:
At present 90% of reactant A is converted into product by a second-order reaction in a single mixed flow reactor. We plan to place a second reactor similar to the one being used in series with it.
(a)For the same treatment rate as that used at present, how will this addition affect the conversion of reactant?

$$
\mathrm{X}_{\mathrm{A}}=0.972
$$

(b)For the same 90% conversion, by how much can the treatment rate be increased?

Example 5-6:

A liquid phase, first order reaction was carried out isothermally in three CSTR reactors in series. It was known that the second reactor was as large as the first reactor, and the third reactor was x times larger than the first one. It was also assumed that the density was constant throughout the system. If 30% conversion was achieved in the first reactor, what should the x be in order to achieve a total conversion of 81.95% ?

$$
x=3.95
$$

(a)in parallel and
(b)in series

Southern Taiwan University

Example 5-8:

How do you prove that a liquid reaction $(A \rightarrow R)$ process of using two equal size CSTRs in series (each CSTR has a volume of V) is better than the process using one CSTR of volume 2 V or not? If
(a)reaction rate is zero order.
(b)reaction rate is first order.
(Note: derive the proof in terms of outlet concentration or conversion)

(1)Suppose we want to find the minimum size of two mixed"flow reactors ins series
achieve a specified conversion.
-For the first reactor

$$
\frac{\tau_{1}}{C_{0}}=\frac{X_{1}-0}{-r_{1}}
$$

- For the second reactor

$$
\frac{\tau_{2}}{C_{0}}=\frac{X_{2}-X_{1}}{-r_{2}}
$$

（2）在相同進料條件與得到相同出口轉化率的前提下，大小不同 reactor 的排列方式將影響到 X_{1} 值與反應器體積的大小。

（1）As the intermediate conversion X_{1} changes
$\stackrel{H}{\Rightarrow}$ the size ratio of these two reactors（two shaded areas）
the total volume of the two vessels（the total shaded area）
（2）The total reactor volume is as small as possible when the rectangle KLMN is as large as possible．
（3）We construct a rectangle between the $x-y$ axes and touching the arbitrary curve at point $\mathrm{M}(\mathrm{x}, \mathrm{y})$ ．［參考下頁的圖（即課本 Figure 6．11）］
－The area of the rectangle is $\mathrm{A}=\mathrm{xy}$
OThe area is maximized when
$\mathrm{dA}=x d y+y d x=0$
or $-\frac{d y}{d x}=\frac{y}{x}$ Southern Taiw
－此狀況代表

M 點在曲線斜率 $\left(-\frac{d y}{d x}\right)=$ 矩形對角線 NL 的斜率 $\left(\frac{y}{x}\right)$ 時
（其面積為極大。
由於曲線種類無限 \rightarrow 此點可能不存在，但也可能不只一點。
對 $\mathrm{n}>0$ 的反應動力學而言，常只有一個極值。

4利用上述方法即可找出串聯的兩個 CSTR 之最佳體積比值。
（1）就1st－order reaction而言 \rightarrow 等容反應器最佳。
（2）就 $\mathrm{n}>1$ 的 reaction而言 \rightarrow 體積較小的反應器放在前面較佳。
（3）就 $\mathrm{n}<1$ 的 reaction 而言 \rightarrow 體積較大的反應器放在前面較有利。

4．Reactors of different types in series：
（1）下圖（即課本 Figure 6－12）是不同類型 reactor 串聯的一例：

（2）一般而言，依下列通則來考慮反應器的排列方式最為理想：
（1）若 $\mathrm{n}>1 \rightarrow$ rate－concentration curve 會下凹 \rightarrow reactant 濃度需僅可能高 \rightarrow 所以，排列方式應為 PFR \rightarrow 小的 CSTR \rightarrow 大的 CSTR

2若 $\mathrm{n}<1 \rightarrow$ rate－concentration curve 會上凸 \rightarrow reactant 濃度需僅可能低 \rightarrow 所以，排列方式應為大的 CSTR \rightarrow 小的 CSTR \rightarrow PFR
（3）真正在解題時，作圖法要會；逐步算出一個一的反應器的結果亦非常重要，這需要靠耐心與熟悉公式了！

Southern Taiwan University

Example 5－9：
已知反應 $\mathrm{A}+\mathrm{R} \rightarrow \mathrm{R}+\mathrm{R}$ 的 rate equation，$-r_{A}=\mathrm{kC}_{\mathrm{A}} \mathrm{C}_{\mathrm{R}}$ ，而 rate constant $\mathrm{k}=1.0$ $\mathrm{liter} / \mathrm{mol} \cdot \mathrm{min}$ 。若進料含有 99% 的 A 與 1% 的 R，今欲得到含 90% 的 R 之產物且濃度固定為 $\mathrm{C}_{\mathrm{A} 0}+\mathrm{C}_{\mathrm{R} 0}=\mathrm{C}_{\mathrm{A}}+\mathrm{C}_{\mathrm{R}}=1.0 \mathrm{~mol} / \mathrm{liter}$ 。則使用下列反應器所需的滞留時間為何？（A）於 CSTR 中（B）於 PFR 中（C）串聯一個 CSTR 與一個 PFR。

Sol ： $\operatorname{CSTR} \rightarrow \tau=\frac{C_{A 0} V}{F_{A 0}}=\mathrm{C}_{A 0}\left[\frac{X_{1}-X_{0}}{\left(-r_{A}\right)}\right]$
$\operatorname{PFR} \rightarrow \tau=\frac{C_{A 0} V}{F_{A 0}}=\mathrm{C}_{A 0} \int_{X_{0}}^{X_{1}} \frac{d X}{\left(-r_{A}\right)}$
但 $-r=\mathrm{kC}_{\mathrm{A}} \mathrm{C}_{\mathrm{R}} \rightarrow$ 用計算法並不易得到答案
\therefore 使用以 $1 /-r_{A}$ 對 C_{A} 作圖的圖解法 \rightarrow 求出 $-r_{A}=k \mathrm{~K}_{\mathrm{A}} \mathrm{C}_{\mathrm{R}}$

Example 5-10:

An elementary liquid phase reaction $A+B \rightarrow R$ is conducted isothermally in a reactor system with equimolar feed ration of A and B. The reactor system is a mixed flow reactor with a subsequent plug flow reactor of equal size. The reactor system can give 90% final conversion of A . What will be the final conversion of A if reversing the order of the two units, and all else unchanged.

1.Recycle reactor: A reactor that divides the product stream from a plug flow reactor and return a portion of it to the entrance of the reactor.
2. Recycle ratio R is defined as

$$
\mathrm{R}=\frac{\text { Volume of fluid returned to the reactor entrance }}{\text { Volume leaving the system }}
$$

$\bullet \mathrm{R}=0 \rightarrow$ Plug flow reactor
$\bullet \mathrm{R}=\infty \rightarrow$ Mixed flow reactor
\rightarrow 循環操作提供 PFR 獲得不同程度逆混合的方法。

3．根據上圖與 PFR 的特性式

$$
\begin{equation*}
\frac{V}{F_{A 0}^{\prime}}=\int_{X_{A 1}}^{X_{A 2}=X_{A}} \frac{d X_{A}}{-r_{A}} \tag{A}
\end{equation*}
$$

（1）$F_{A 0}^{\prime}$ ：the feed rate of A entering the reactor（fresh feed + recycle）

$$
\therefore F_{A 0}^{\prime}=(\mathrm{R}+1) \mathrm{F}_{\mathrm{A} 0}
$$

（2） $\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A} 0} \frac{\left(1-X_{A}\right)}{\left(1+\varepsilon_{A} X_{A}\right)} \rightarrow X_{A 1}=\frac{1-\left(C_{A 1} / C_{A 0}\right)}{1+\varepsilon_{A}\left(C_{A 1} / C_{A 0}\right)}$
（3） $\mathrm{R}=\frac{v_{f}}{v_{3}} \rightarrow v_{3}=\mathrm{R} v_{f}$
$\mathrm{C}_{\mathrm{A} 1}=\frac{F_{A 1}}{v_{1}}=\frac{F_{A 0}+F_{A 3}}{v_{0}+R v_{f}}=\frac{F_{A 0}+R F_{A 0}\left(1-X_{A f}\right)}{y_{0}+R v_{0}\left(1+\varepsilon_{A} X_{A f}\right)}=C_{A 0}\left(\frac{1+R-R X_{A f}}{1+R+R \varepsilon_{A} X_{A f}}\right)$

$$
\text { 代入式(B). } \therefore X_{A 1}=\frac{1-\frac{1+R-R X_{A f}}{1+R+R \varepsilon_{A} X_{A f}}}{1+R-R X_{A f}}
$$

（4）$\therefore \frac{V}{F_{A 0}^{\prime}}=\int_{X_{A 1}}^{X_{A 2}=X_{A f}} \frac{d X_{A}}{-r_{A}} \rightarrow \frac{V}{(R+1) F_{A 0}}=\int_{X_{A 1}}^{X_{A 2}=X_{A J}} \frac{d X_{A}}{-r_{A}}$

$$
\begin{aligned}
& \rightarrow \frac{V}{F_{A 0}}=(\mathrm{R}+1) \int_{\left(\frac{R}{R+1}\right) X_{A f}}^{X_{A f}} \frac{d X_{A}}{-r_{A}} \quad-\cdots--- \text { any } \varepsilon_{A} \& \quad \mathrm{X}_{\mathrm{A} 0}=0 \\
& \tau=\mathrm{C}_{\mathrm{A} 0} \frac{V}{F_{A 0}}=-(\mathrm{R}+1) \int_{\left(\frac{C_{A 0}+R C_{A f}}{R+1}\right)}^{C_{A}} \frac{d C_{A}}{-r_{A}} \\
& \cdots-\cdots---\varepsilon_{A}=0 \quad \& \quad \mathrm{X}_{\mathrm{A} 0}=0
\end{aligned}
$$

$$
\varepsilon_{A}=0 \text { 時, }(\mathrm{B}) \text { 式得 } \mathrm{C}_{\mathrm{A} 1}=C_{A 0}\left(\frac{1+R-R X_{A f}}{1+R+R \varepsilon_{A} X_{A f}}\right)=C_{A 0}\left(\frac{1+R-R X_{A f}}{1+R}\right)
$$

$$
\begin{aligned}
& \text { 但 } X_{A f}=\frac{C_{A 0}-C_{A f}}{C_{A 0}} \\
& \therefore \mathrm{C}_{\mathrm{A} 1}=C_{A 0}\left(\frac{1+R-R X_{A f}}{1+R}\right)=C_{A 0}\left(\frac{1+R-R \frac{C_{A 0}-C_{A f}}{C_{A 0}}}{1+R}\right)
\end{aligned}
$$

$$
=\frac{C_{A 0}+C_{A 0} R-R\left(C_{A 0}-C_{A f}\right)}{1+R}=\frac{C_{A 0}+R C_{A f}}{1+R}
$$

$$
\therefore \tau=\mathrm{C}_{\mathrm{A} 0} \frac{V}{F_{A 0}}=-(\mathrm{R}+1) \int_{\left(\frac{C_{A 0}+R C_{A N}}{R+1}\right.}^{C_{A}} \frac{d C_{A}}{-r_{A}} \quad \cdots-\cdots-\varepsilon_{A}=0 \quad \& \quad \mathrm{X}_{\mathrm{A} 0}=0
$$

s．mathern Taiwan University

The conversion of an elementary liquid phase second－order reaction $2 \mathrm{~A} \rightarrow 2 \mathrm{R}$ is $2 / 3$ when operated in an isothermal plug flow reactor with a recycle ratio of unity．What will be the conversion if the recycle stream is shut off．
$3 / 4$

