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9.4 Power series (冪級數) 

Define:  

     is called a power series centered 

at . 

2
0 1 2

0

( ) ( ) ( )n
n

n

a x c a a x c a x c
∞

=

− = + − + − +∑
c∈

If , then  is called a power series. 0c = 2
0 1 2

0

n
n

n

a x a a x a x
∞

=

= + + +∑
 
Theorem: Convergence of a power series 

    For a power series , let 
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(3) Each endpoint x c R= ±  must be tested separately for convergence or 
divergence. 

 
Define:  

(1) The number 1R
L

=  is the radius of convergence (收斂半徑) of the power series. 

(2) The set of all values of x  for which the power series converges is the interval of 
convergence (收斂區間) of the power series. 

 

Ex 1: Find the interval of convergence of 
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Theorem:  
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Ex 2: Find the power series and the interval of convergence of ln(1 )x+ . 
 
 
 
 
 
 
 
 
 
 

Ex 3: Find (1)  (2)  1
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