3.3 The chain rule

Ex 1: If
$$y = (x^2 + x + 1)^3$$
, find $\frac{dy}{dx}$

Sol 1:

$$\frac{dy}{dx} = (x^2 + x)'(x^2 + x)(x^2 + x) + (x^2 + x)(x^2 + x)'(x^2 + x) + (x^2 + x)(x^2 + x)(x^2 + x)'(x^2 + x)'(x$$

Sol 2: Let $u(x) = x^2 + x$, $\Rightarrow y = u^3$ So, $\frac{dy}{du} = 3u^2$ and $\frac{du}{dx} = 2x+1$ Thus, $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 3u^2 \cdot (2x+1) = 3(x^2+x)^2(2x+1)$ **Theorem:**(The chain rule) If y = f(u), and u = g(x) are differentiable, then y = f(g(x)) is differentiable and $(f(g(x)))' = f'(g(x)) \cdot g'(x)$ or dy du dy du dxdxExtended form: If y = f(g(h(x))), u = g(h(x)), v = h(x) $\rightarrow (f(g(h(x))))' = f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x)$ outhern Taiwan University $dx \quad du \quad dv \quad dx$

Concept: If $y = (f(x))^r, r \in \mathbb{R}$, then $y' = r(f(x))^{r-1} \cdot f'(x)$

Ex 2: Let
$$F(x) = (3x+1)^2$$
. Compute $F'(x)$ and $F'(1)$.

Ex 3: Differentiate the function $G(x) = \sqrt{x^2 + 1}$

Ex 4: Find
$$f'(x)$$
 if $f(x) = \frac{1}{(4x^2 - 7)^2}$

Ex 5: If
$$f(x) = (2x^2 + 3)^4 (3x - 1)^5$$
, find $f'(x)$

Ex 6: If $y = u^{\frac{3}{4}} + u^2$, $u = x^4 - 3x^2$, find $\frac{dy}{dx}$

Ex 7: Find the slope of the tangent line to the graph of the function

 $f(x) = \left(\frac{2x+1}{3x+2}\right)^3$

at the point $(0,\frac{1}{8})$.

