2.4 Continuity

Def: f(x) is continuous at $a \Leftrightarrow (1) f(a)$ is defined.

(2)
$$\lim_{x \to a} f(x)$$
 exists.
(3) $\lim_{x \to a} f(x) = f(a)$

$$\Leftrightarrow \lim_{x \to a} f(x) = f(a)$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \vartheta \mid x - a \mid < \delta, \Rightarrow \mid f(x) - f(a) \mid < \varepsilon$$

Def: If f is not continuous at $a \rightarrow f$ is discontinuous at a.

Ex 1: Where is each of the following functions discontinuous?

(1)
$$f(x) = \frac{1}{x-1}$$

(2) $g(x) = \begin{cases} \frac{1}{x-1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$
(3) $h(x) = \begin{cases} \frac{x^2-1}{x-1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$
(4) $I(x) = \begin{cases} \frac{x^2-1}{x-1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$

Def: If f is continuous on an interval $I \Leftrightarrow f$ is continuous at every point in

I.
Theorem: If *f* and *g* are continuous at *a*, then (1)
$$cf, \forall c \in \mathbb{R}$$
 (2) $f \pm g$
(3) $f \cdot g$ (4) $\frac{f}{g}, g(a) \neq 0$ are also continuous at *a*.
Ex 2: Any polynomial is continuous function.
Ex 3: Discuss the continuity for (1) $f(x) = \begin{cases} x+2, x \neq 2 \\ 1, x=2 \end{cases}$ (2) $g(x) = \begin{cases} \frac{1}{x}, x > 0 \\ x \\ -1, x \leq 0 \end{cases}$

(3)
$$h(x) = \frac{4x^3 - 3x^2 + 1}{x^2 - 3x + 2}$$

Theorem: If $\lim_{x \to a} g(x) = L$ and f is continuous at L, then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(L)$$

Ex 4:
$$\lim_{x \to 1} (x + \sqrt{2 - x^2})^3 = 8$$

Ex 5: If $f(x) = \begin{cases} x, x \neq 0 \\ 1, x = 0 \end{cases}$, and $g(x) = x^2 - 1$, find $\lim_{x \to 1} f(g(x))$

Ex 6: Evaluate
$$\lim_{x \to 1} \sin^{-1} \left(\frac{1 - \sqrt{x}}{1 - x} \right)$$

The intermediate value theorem(中間値定理):

- (1) f is continuous on [a,b]
- (2) $\forall k$ between f(a) and f(b),

then $\exists c \in [a, b], \exists f(c) = k$.

Bolzano's theorem or Locating root theorem

- (1) f is continuous on [a,b]
- (2) $f(a) \cdot f(b) < 0$

